Nitesh Mathur
Advisor: Dr. Tong Li

November 10, 2021



Background
Work Done
Obstacles
Theorems

Future Work



» Constructing global solutions and finding zero relaxation limits
of traffic flow

» Roadways, Vehicles, Drivers
» Microscopic Vs Macroscopic
» We will be focusing on a specific macroscopic model



History of Traffic Flow

» Lighthill-Whitham-Richards (LWR) model [1955, 1956]
» Payne-Whitham (PW) model [1971, 1974]

» Viscous models studied by Kerner-Konhauser, Kuhne,
Beckshulte, and Li [1984-1994, 2008]

» Aw-Rascle and Zhang's higher continuum (ARZ) models
[2000, 2001]



Dafermos Theory

v

Reading Research in Spring 2021 - Dafermos’ Hyperbolic
conservation laws in continuum physics [2]

Aim - Existence and long time behavior of BV solutions to
the Cauchy Problem

Context - Strictly hyperbolic systems of balance laws
Global existence of BV solutions based on damping

For system of two balance laws, L!-estimates derived by
constructing convex entropies



» Let U e R".
> U= (u1,un,....,up), F(U) = (A(u), f2(v), ..., fa(t))
» Consider the general conservation form

Ue + F(U)x + P(U) = 0 (1)

with initial data
U(x,0) = Uo(x), (2)

where x € R, t > 0.



The Model

» To analyze the 2 x 2 traffic flow model:

Pt + (pV)x - 07

v — ve(p) (3)

1
Ve + (v + g(p))x + =0,

2 T

with initial data

(p(x,0), v(x,0)) = (po(x), vo(x)) (4)

where x e R, t > 0,7 > 0.
» o - density, v - velocity, v.(p) - equilibrium velocity.

» g(p) - anticipation factor and satisfies

g'(p) = p(V/(p)/0)*, (5)

where g’(p) >0,0< 0 < 1.



LWR Model

» The equilibrium flow is described by
Lighthill-Whitham-Richards (LWR) model [4, 5]

pt+ (pve(p))x =0, xeR,t>0, (6)

with initial data p(x,0) = po(x) > 0.
» q(p) = pve(p) is known as the fundamental diagram

» For our work, we let

Ve(p) = —ap + b, ()

where a > 0,6 > 0.

» In our study, the equilibrium flux g(p) = p(—ap + b) is a
concave function of p.



Work Overview

» We showed in [1] the existence of a global BV solution for a
system of balance laws arising in traffic flow in the framework
of Dafermos [2]

» Showed the decay of L!- and L2-norms

» Computed entropy-entropy flux pair, Kawashima condition,
sub-characteristic condition, and the partial dissipative
inequality

» With these conditions we show the existence of BV solutions
for the Cauchy problem
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First Transformation

» We want U = 0 to be an equilibrium solution we need to do a

change of variables v = u + b.

» Now we can rewrite (3) as follows

pt+ (p(u+b))x =0
u+b—vep)

e+ Gl b + g (o)) + —0

» In terms of the general form, we have

U= (p,v—>b)=(p,u)
F(U) = (plu -+ b), 3% + ub+ g(0)T

)

u+b—vlp)
-

P(U) = (0,

(8)



Preliminaries

» The Jacobian is
u+b p
g'(p) u+b
» Using (5) and (7), the eigenvalues are
a
M2=u+b¥F 5"
» The corresponding right eigenvectors are
0 .
=(F-,1)".
rn2 (:Fav )

» The system (8) is genuinely nonlinear since

/!
V=20 _5u0 o1

v{(p)

(10)

(11)

(12)

(13)
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Obstacles

In order to apply Dafermos’ theory [2], we had to
» Search for a convex entropy-entropy flux pair
» Verify conditions
» Transform system (3) once again into equivalent form

» Derive a global bound between the distance of the velocity
and equilibrium velocity



Entropy-Entropy Flux Pair

| 2

>

We need to find smooth entropy flux pair (1, q)(U) where 7 is
convex and has been normalized by 7(0), Dn(0) = 0.

This is important since admissible solutions U must satisfy the
entropy inequality

9n(U(x, t)) + 9xq(U(x, t)) + Dn(U(x, 1)) - P(U(x, 1)) < 0.
(14)
We also want our system to be a symmetrizable, which

means it needs to be endowed with nontrivial companion
balance laws.

So we also need to solve
DQ:(U, X) = B(U,X)" DG (U, X)
D@:(U,x) = B(U,X)TDGy(U, X),

0Q; 0Q;
dp’ Oy

(15)

where G; = U, G, = F(U), DQ; = |

],i=1,2.



Continued

» After simplifying this computation, we derived a wave
equation for n

» Solving the wave equation, we then constructed an explicit
solution of a convex entropy-entropy flux pair

n(p, u) = Qi(p, u) = 2((sp))* + (u + b)*),

16
a(p.0) = Galp.v) = a(u+ D)) + Su et

a
where s = —.
0

» With this entropy-entropy flux pair, the convexity conditions
are satisfied



Partial Dissipative Inequality

» \We assume that P is dissipative semidefinite relative to 7, i.e.

v

Dy(U) - P(U) = a|P(U)P2, (17)

with o > 0.

For our system (8), we needed to find a condition such that

on 0On 0 u+b—ve(p).o
Lz — > o(—m—= 18
5o el 2 a2y g
-
After simplification, we get the following condition
|U+b—Ve(p)| S 477—7 (19)

u a
Ve(p) - equilibrium speed, u + b - speed

Numerator of left-hand side of the inequality describes
difference between the velocity and the equilibrium velocity.



» The Kawashima condition is given by
DP(0)r;(0) £0, i=1,..,n. (20)
» For our system, we have

0
F0 + 1
T

DP(0)r;(0) =

aH (21)

since 0 < 0 < 1.



» The sub-characteristic is satisfied when
)\1 <A < )\2. (22)
» For v = v(p),
Ax(p) = —2ap + b.

» The sub-characteristic condition is satisfied for (8) since we
have

u+b—§p<—2ap+b<u+b+§p. (23)



Equivalent Form

» In order to apply Dafermos’ theory, we needed to convert (8)

into an equivalent form
OV +0,G(V,W)+ X(V,W)=0
W + O H(V,W)+ CW + Y(V,W) =0,

where x € R, t > 0,and nuw C(0,0) > 0.
» We had to do the following change of variables

V=p
W=ap+u
» This transformed (8) to
Vi+ [V(W —aV +b),=0

1 1
Wt+[§(W2 —a2V2)+bW+g(p)]X+;W:0

with initial conditions

Zy = (Vo, Wo) = (po, apo + uo).

(24)

(26)

(27)



Verification of Partial Dissipative Inequality

» We derive the following from our equivalent form
-1
—t
(W[ =[Wle 7 (28)

» For the partial dissipative inequality to be satisfied under this
transformation, we further required

47
o+ 41

} (29)

o1
HW()H/_OO < mm{zéo,aéo
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Theorem

Theorem (L!-Estimates)

Consider the Cauchy problem (26) (27). Under condition (29), the
source is dissipative semidefinite (17) relative to the entropy n and
the Kawashima condition (17) holds. Let Z = (V, W) be an
admissible BV solution as defined in (14), with initial values Z
defined on the strip (—oo,00) X [0, T) and taking values in a ball
B), of small radius p, centered at the origin. Suppose that Zy
decays, as |x| — oo, sufficienty fast to render the integral

o0
|12 o= o2 (30)
— 0o

where o > 0 finite. Furthermore, let

/OO Vo(x) dx = 0. (31)

— 00



Then there is a g > 0, independent of T such that for o < oy,

/ 1Z(x, )| dx < bo,0 < t < T, (32)
—00
with b independent of T. Furthermore, if T = oo,

oo
/ |Z(x,t)] dx -0, ast— oco. (33)

—00
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Global BV Solution to a system of balance laws with
nonconcave flux

» An important open problem is to extend the existing results to
nonconcave fundamental diagrams g(p) as suggested from the
experiment data (See [5] and references there in)

» One of the characteristic fields of this system is neither
linearly degenerate nor genuinely nonlinear

» Study of nonconcave flux is an open problem in the framework
of Dafermos [2]

» We plan to apply the ideas from [1] but with a nonconcave
flux
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